
Extra 3 classes on
GithubGithub
Module

Extra 3 classes on Git and
GithubGithub
Module 7_extra

Core concepts in Core concepts in
Module 7

Core concepts in GitCore concepts in Git
Module 7-2

Core Concepts
Git stores snapshots
(commits) of your repository

http://sogilis.com/blog/demystifying
understand/

http://sogilis.com/blog/demystifying-git-concepts-to-
understand/

Core Concepts
Git represents relationships
between commits as a graph

http://sogilis.com/blog/demystifying
understand/

http://sogilis.com/blog/demystifying-git-concepts-to-
understand/

Core Concepts
Git can compute changesets
between any two commits of
your project

http://sogilis.com/blog/demystifying
understand/

http://sogilis.com/blog/demystifying-git-concepts-to-
understand/

Core Concepts
Git sees changes at the level
of lines in a text file

http://sogilis.com/blog/demystifying
understand/

http://sogilis.com/blog/demystifying-git-concepts-to-
understand/

3 Core Concepts

• Snapshot

• Graph• Graph

• Changeset

States of a git RepositoryStates of a git RepositoryRepositoryRepository

The Repository

• Collection of files managed by git
• History (all of it)
• Encompassing file on the Operating System is considered the working

directorydirectory
• Can include files managed by git
• Files ignored by git
• Files not yet managed by git

• Quasi-hidden .git folder
• Since the repo contains all the history, keep the repos narrowly

focused

Encompassing file on the Operating System is considered the working

Since the repo contains all the history, keep the repos narrowly

Three Local States
Working Directory Staging Area

git add

Staging Area Repository (.git folder)

git commit

Three Local States with Remote

Working Directory Staging
Area

Three Local States with Remote

Repository (.git
folder)

Remote (GitHub)

git push

Basic Commands
Mastering a Basic Workflow

Basic Commands

git init – Initialize an Empty RepoInitialize an Empty Repo

git add – Add a Document to the Staging
Area

Add a Document to the Staging

Viewing the Repo

https://www.atlassian.com/git/tutorials/inspecting
repository

https://www.atlassian.com/git/tutorials/inspecting-a-
repository

git status – What’s Happening?What’s Happening?

git log – To view the history of Repoview the history of Repo

git log – With OptionsWith Options

git commit – Records changes in the Repo
• git commit -m “Second check in of my R Script"

Records changes in the Repo
check in of my R Script"

Ok, What Just happened?

sha-1 commit

Ok, What Just happened?

What’s Changed

Git rm

• Don’t delete or rename
tracked files with the
OS; use:

• git rm• git rm

• git mv

Git mv

• Don’t delete or rename
tracked files with the
OS; use:

• git mv

Lather, Rinse, Repeat

Good Commit Messages*

• Be concise, yet evocative. At a glance, you should be able to see what
a commit does. But there should be enough detail so you can
remember (and understand) what was done

• Describe the why, not the what. Since you can always retrieve the • Describe the why, not the what. Since you can always retrieve the
diff associated with the commit, the message doesn’t need to say
exactly what changed. Instead it should provide a high
that focuses on the reasons for the change

*http://r-pkgs.had.co.nz/git.html#commit

Commit Messages*

At a glance, you should be able to see what
a commit does. But there should be enough detail so you can
remember (and understand) what was done

Since you can always retrieve the Since you can always retrieve the
diff associated with the commit, the message doesn’t need to say
exactly what changed. Instead it should provide a high-level summary
that focuses on the reasons for the change

pkgs.had.co.nz/git.html#commit-best-practices

Good Commit Messages

https://chris.beams.io/posts/git

Good Commit Messages

https://chris.beams.io/posts/git-commit/

Workflow Visualized

Blischak, John D., Emily R. Davenport, and Greg Wilson. 2016.
“A Quick Introduction to Version Control with Git and GitHub.”

PLoS Computational Biology 12 (1): e1004668.

Blischak, John D., Emily R. Davenport, and Greg Wilson. 2016.
“A Quick Introduction to Version Control with Git and GitHub.”

PLoS Computational Biology 12 (1): e1004668.

Lifecycle of status

Chacon, S., and B. Straub. 2014. Pro
Apress

Chacon, S., and B. Straub. 2014. Pro Git. The Expert’s Voice.
Apress.

Commit Graph Visualized

Chacon, S., and B. Straub. 2014. Pro
Apress

Commit Graph Visualized

Chacon, S., and B. Straub. 2014. Pro Git. The Expert’s Voice.
Apress.

.gitignore

.gitignore

• Make the code produce a plot file, say a pdf
• Run the code
• Make a .gitgnore file

• .pdf• .pdf
• .Rout

• Add & commit the .gitignore
• Run ls (you should see the pdf and the
• Run git ls-files (you should

file)

Make the code produce a plot file, say a pdf

and the Rout file)
(you should not see the pdf and the Rout

Break Time?

New R Project With Your Existing RepoNew R Project With Your Existing Repo

Make the Changes in RStudio

Add / made changes

RStudio

push/pull greyed out

Commit the Changeset

Make Some Modifications

invertMatrix.R
has been
modified

invertMatrix.R
has been
added

Make Some Modifications

Commit the ModificationsCommit the Modifications

Git in RStudio Covers Most

• If RStudio does all of this, why bother with the command line?
• Most of the time you won’t need to, but when you need it, you need

it
• Merge conflicts, for example• Merge conflicts, for example

Most of Your Needs

does all of this, why bother with the command line?
of the time you won’t need to, but when you need it, you need

Code Time

Connecting a Local Repo to a
Remote RepoRemote Repo

Module 7

Connecting a Local Repo to a
Remote RepoRemote Repo

Module 7-3

Git is a Distributed Version Control System

• Peer-to-peer as opposed to server-
• Common operations (commits, viewing history, etc.) are fast since

there is no need to communicate with a central server
• Communication is only necessary with sharing changes among peers• Communication is only necessary with sharing changes among peers
• Each working copy effectively functions as a remote backup of a

codebase and its change history –

https://en.wikipedia.org/wiki/Distributed_version_control

Version Control System

-client
Common operations (commits, viewing history, etc.) are fast since
there is no need to communicate with a central server
Communication is only necessary with sharing changes among peersCommunication is only necessary with sharing changes among peers
Each working copy effectively functions as a remote backup of a

protecting against data loss

https://en.wikipedia.org/wiki/Distributed_version_control

How Does My Local Repo Sync with GitHub*

• Several ways to do this:
• Clone an existing repository from GitHub to a local folder

• Your own, or
• Another coder’s• Another coder’s

• Initialize a repository locally and push to GitHub
• Start a new project in RStudio with version control

*or bitbucket

How Does My Local Repo Sync with GitHub*

Clone an existing repository from GitHub to a local folder

Initialize a repository locally and push to GitHub
with version control

bitbucket, gitlab, etc.

Local First

• We’ve started this with git init in a local repo
• How connect to GitHub?

• Make an empty repo on GitHub, i.e. no README
• Copy the url of this repo from GitHub• Copy the url of this repo from GitHub
• Navigate to your current folder
• Add the remote
• Push the repo

in a local repo

Make an empty repo on GitHub, i.e. no README
of this repo from GitHubof this repo from GitHub

GitHub First

• You did a version of this when you worked through the Happy
with R install tutorial

• How connect to GitHub?
• Make a repo on GitHub (I typically add both a README and a .• Make a repo on GitHub (I typically add both a README and a .
• Copy the url of this repo from GitHub
• Navigate to your current folder
• Clone the repo

You did a version of this when you worked through the Happy Git

Make a repo on GitHub (I typically add both a README and a .gitignore file)Make a repo on GitHub (I typically add both a README and a .gitignore file)
of this repo from GitHub

From RStudio*

• Make a new project
• Project type
• Choose name & git

*https://support.rstudio.com/hc/en
us/articles/200532077?version=1.1.322&mode=desktop

*https://support.rstudio.com/hc/en-
us/articles/200532077?version=1.1.322&mode=desktop

My Preferred Way

• Start on GitHub
• Create an empty repo

• Include a README file
• Include a .gitignore file• Include a .gitignore file

• Clone it locally on the command line
• Set up a new project in RStudio in the existing directory

Clone it locally on the command line
in the existing directory

Let’s Practice

Let’s Practice

Let’s Practice

Let’s Practice

Bypass the Command LineBypass the Command Line

Pushing to GitHub – How Often?

• Several schools of thought on how often to push
• A prominent one (Hadley Wickham) is to push considerably less often

than you commit*
• “Pushing code means publishing code”• “Pushing code means publishing code”
• “Strive to push code that works”

• I tend to push more often than this, because I code on small teams,
and I like the back up

*http://r-pkgs.had.co.nz/git.html#commit

How Often?

Several schools of thought on how often to push
A prominent one (Hadley Wickham) is to push considerably less often

“Pushing code means publishing code”“Pushing code means publishing code”

I tend to push more often than this, because I code on small teams,

pkgs.had.co.nz/git.html#commit-best-practices

Pushing to GitHub – Good Commit Messages*

• Be concise, yet evocative. At a glance, you should be able to see what
a commit does. But there should be enough detail so you can
remember (and understand) what was done

• Describe the why, not the what. Since you can always retrieve the • Describe the why, not the what. Since you can always retrieve the
diff associated with the commit, the message doesn’t need to say
exactly what changed. Instead it should provide a high
that focuses on the reasons for the change

*http://r-pkgs.had.co.nz/git.html#commit

Good Commit Messages*

At a glance, you should be able to see what
a commit does. But there should be enough detail so you can
remember (and understand) what was done

Since you can always retrieve the Since you can always retrieve the
diff associated with the commit, the message doesn’t need to say
exactly what changed. Instead it should provide a high-level summary
that focuses on the reasons for the change

pkgs.had.co.nz/git.html#commit-best-practices

Practice a Cycle in Local RepoPractice a Cycle in Local Repo

Three Local States with Remote

Working Directory Staging
Area

Three Local States with Remote

Repository (.git
folder)

Remote (GitHub)

git push

Adding GitHub to the Workflow

Chacon, S., and B. Straub. 2014. Pro
Apress

Adding GitHub to the Workflow – git push

Chacon, S., and B. Straub. 2014. Pro Git. The Expert’s Voice.
Apress.

Knowing Your Remotes

What is a Merge Conflict?

• A merge operation in git is when you try to blend changes made:
• To the same file
• On two different branches

• Wait, but we haven’t talked (much) about branches?Wait, but we haven’t talked (much) about branches?
• For now, know that we’ve been working with one branch
• So we can work with the same branch

• Local
• GitHub
• Node

• And these can come into conflict – let’s try!

What is a Merge Conflict?

is when you try to blend changes made:

Wait, but we haven’t talked (much) about branches?Wait, but we haven’t talked (much) about branches?
For now, know that we’ve been working with one branch – MASTER
So we can work with the same branch – MASTER – in two (or more repos):

let’s try!

Merge Conflicts

• Make sure your working directory shows a clean status
• Do a git pull
• Do a git push
• Modify the file locally• Modify the file locally
• Commit it, but don’t push it yet
• Navigate to the repo on GitHub
• Modify the same file on GitHub
• Commit it
• Go back to local repo and attempt a push

Make sure your working directory shows a clean status

Go back to local repo and attempt a push

Check Status of Your Local Repo

• Best practice to pull before you push (
this isn’t as big a concern)

Check Status of Your Local Repo

Best practice to pull before you push (n.b. if it’s just you and GitHub,

Make Local Changes

Make Remote Changes

• Edit on GitHub

Commit the Changes

View Status on GitHub

What’s Happened

• We have one repo – esatest (or whatever you’ve named it)
• We’ve made and committed changes in two different places
• Now let’s try to sync the repos by pushing our local to GitHub

(or whatever you’ve named it)
We’ve made and committed changes in two different places
Now let’s try to sync the repos by pushing our local to GitHub

Pull the Changes

Check Status

View the Conflict

Incoming marker

Unchanged lines

Current marker

Branch Separator

sha-1 from GitHub

Manually Resolve the Conflict

Choose this Block

Or this Block

Choose this Block

You can configure graphical merge tools like p4merge to make
this easier

Manually Resolve the Conflict

You can configure graphical merge tools like p4merge to make
this easier

Add it, Commit it, Push itAdd it, Commit it, Push it

Merge Resolved

Note status

Merge Resolved

Merge Commits Look a Bit DifferentMerge Commits Look a Bit Different

Just Another Repo!

• Well, yes, but…
• I’ll try a live demo to show what happens
• If it fails, following is an example of the normal

put up withput up with
• (But it’s worth it!)

I’ll try a live demo to show what happens
If it fails, following is an example of the normal bs that you need to

SSH to a Linux Box

• Cloned my repo from GitHub
• Created a new file
• Added it
• Pushed it:• Pushed it:

• ??? Stackoverflow to the rescue

Need to Use SSH not HTTPNeed to Use SSH not HTTP

Need to change thisNeed to change thisNeed to change thisNeed to change this

No LUCK!

Need to pair the SSH keys….
http://happygitwithr.com/ssh

Need to pair the SSH keys….
http://happygitwithr.com/ssh-keys.html

https://stackoverflow.com/questions/9270734/ssh
permissions-are

https://stackoverflow.com/questions/9270734/ssh-
are-too-open-error

How Does the Repo Change?How Does the Repo Change?
Lesson 7

How Does the Repo Change?How Does the Repo Change?
Lesson 7-4

3 Core Concepts

• Snapshot

• Graph• Graph

• Changeset

With These Concepts, We Can

• Use the sha-1 unique identifier to view a snapshot
• Compare the differences from one snapshot to a next
• Compare two different snapshots/commits
• Revert to the project at specific points (commits) in time• Revert to the project at specific points (commits) in time

With These Concepts, We Can

1 unique identifier to view a snapshot
Compare the differences from one snapshot to a next
Compare two different snapshots/commits
Revert to the project at specific points (commits) in timeRevert to the project at specific points (commits) in time

sha-1 Identifier – These Are Crucial

• These are the nodes along the graph
• We use them to view and/or navigate

These Are Crucial

These are the nodes along the graph
We use them to view and/or navigate

Seeing Changes Before a Commit

Visualize Changes
before a commit

Seeing Changes Before a Commit

Seeing Changes Between Two Diffs

Visualize differences

1 commit IDs

Visualize differences
between 2 commits

Seeing Changes Between Two Diffs

Order Matters Between Two DiffsOrder Matters Between Two Diffs

Seeing Changes Between Two Diffs

• git diff master~1 master

• git diff <sha-1> <sha-1>

• git diff (this just shows changes made but not added)

• Why all the hassle?
• Diffs tell you what changed
• Commit messages tell you why
• With both, you can easily navigate through the history of a repo

Seeing Changes Between Two Diffs

diff master~1 master

1>

(this just shows changes made but not added)

With both, you can easily navigate through the history of a repo

Going to a Particular Commit

• git checkout <sha-1>

Going to a Particular Commit

Going to a Particular Commit

• git checkout c572b41

Going to a Particular Commit

Detached Head???

• git log --oneline --decorate

• Has to do with where the branch is pointing
commit

• Explore your script and you’ll see it from that state:

decorate

Has to do with where the branch is pointing – now it’s to a previous

Explore your script and you’ll see it from that state:

Where are we?

Detached Head???

• git log --oneline --decorate

Where did the other commits go?

decorate

Where did the other commits go?

The Commits Are Still There

• git checkout master

The Commits Are Still There - Phew!

Why Would You Want to Do This?

• Allows you to work with the file as it was at that time:

• And then bring those changes into the current commit
• I’ll argue for using a branch to do this in the last section

Why Would You Want to Do This?

Allows you to work with the file as it was at that time:

And then bring those changes into the current commit
I’ll argue for using a branch to do this in the last section

Backing Out Changes

• This can get complicated!
• Three main commands:

• git reset (hard, soft, mixed)
• git rebase• git rebase
• git revert
• git cherry-pick

• This diagram helps:

reset (hard, soft, mixed)

More Resources

• https://git-scm.com/book/en/v2/Git
• https://www.atlassian.com/git/tutorials/undoing
• https://www.atlassian.com/git/tutorials/rewriting

scm.com/book/en/v2/Git-Basics-Undoing-Things
www.atlassian.com/git/tutorials/undoing-changes
www.atlassian.com/git/tutorials/rewriting-history

